欢迎您光临机械网,如有问题请及时联系我们。

光纤通信基础知识讲解?光纤通信简明教程答案

作者:机械网
文章来源:本站

  光纤通信基础知识讲解?

  光纤的原材料以玻璃为主,所以制造成本相对不高。光纤通讯有良好的特性,如:保密性、容量高、速率高等。所以光纤应用极为广泛,大致有以下几类:

  1、骨干传输网络(SDH/SONET),如各大城市之间、各大洋底的海底光缆等;

  2、以太网(GBE),包括现在的光纤到户(FTTH)、到楼(FTTB)、到社区等,主要是我们家庭、办公网络;

  3、数据网络(Fiber channel),各种存储设备、数据库,包括正在发展的云计算服务系统;

  4、有线电视传输(PIN接收);

  5、其他特种用途传输,如战机、舰船。

  动态图示光纤光缆的48条基础知识点

  1.简述光纤的组成

  答:光纤由两个基本部分组成:由透明的光学材料制成的芯和包层、涂敷层。

  ?

  2.描述光纤线路传输特性的基本参数有哪些?

  答:包括损耗、色散、带宽、截止波长、模场直径等。

  3. 产生光纤衰减的原因有什么?

  答:光纤中光功率沿纵轴逐渐减小。光功率减小与波长有关。光纤链路中,光功率减小主要原因是散射、吸收,以及连接器和熔接接头造成的光功率损耗。衰减的单位为dB。

  ?

  产生原因:使光纤产生衰减的原因很多,主要有:吸收衰减,包括杂质吸收和本征吸收;散射衰减,包括线性散射、非线性散射和结构不完整散射等;其它衰减,包括微弯曲衰减等。其中最主要的是杂质吸收引起衰减。

  ?

  光纤衰减系数(fiber attenuation coefficient):每公里光纤对光信号功率的衰减值。单位:dB/km。

  光纤弯曲损耗

  光纤对弯曲非常敏感,过度弯曲 = 光溢出。如果弯曲半径<20x 外径,则大部分光都会从涂层溢出。单模光缆比多模光缆对弯曲损耗更敏感。

  两种弯曲都会发生光损耗:Macrobend(宏弯) 和Microbend(微弯)。

  Macrobend

  ?

  当Macrobend弯曲被纠正,可以得到恢复。

  ?

  Microbend

  ?

  Microbend无法恢复,比如由线缆捆扎过紧造成。

  ?

  4.光纤衰减系数是如何定义的?

  答:用稳态中一根均匀光纤单位长度上的衰减(dB/km)来定义。

  5.插入损耗是什么?

  答:是指光传输线路中插入光学部件(如插入连接器或耦合器)所引起的衰减。

  6.光纤的带宽与什么有关?

  答:光纤的带宽指的是:在光纤的传递函数中,光功率的幅值比零频率的幅值降低50%或3dB时的调制频率。光纤的带宽近似与其长度成反比,带宽长度的乘积是一常量。

  7.光纤的色散有几种?与什么有关?

  答:光纤的色散是指一根光纤内群时延的展宽,包括模色散、材料色散及结构色散。取决于光源、光纤两者的特性。

  ?

  光纤中由光源光谱成分中不同波长的不同群速度所引起的光脉冲展宽的现象。

  ?

  ?

  材料色散

  光纤材料石英玻璃的折射率对不同的传输光波长有不同的值,许多不同波长的太阳光通过棱镜以后可分成七种不同颜色就是一个证明。由于上述原因,材料折射率随光波长而变化从而引起脉冲展宽的现象称为材料色散。

  ?

  波导色散

  由于光纤的纤芯与包层的折射率差很小,因此在交界面产生全反射时,就可能有一部分光进入包层之内。这部分光在包层内传输一定距离后,又可能回到纤芯中继续传输。进入包层内的这部分光强的大小与光波长有关,这就相当于光传输路径长度随光波波长的不同而异。

  ?

  把有一定波谱宽度的光源发出的光脉冲射入光纤后,由于不同波长的光传输路径不完全相同,所以到达终点的时间也不相同,从而出现脉冲展宽。具体来说,入射光的波长越长,进入包层中的光强比例就越大,这部分光走过的距离就越长。这种色散是由光纤中的光波导引起的,由此产生的脉冲展宽现象叫做波导色散。光纤的折射率分布

  ?

  8.信号在光纤中传播的色散特性怎样描述?

  答:可以用脉冲展宽、光纤的带宽、光纤的色散系数三个物理量来描述。

  ?

  9.什么是截止波长?

  答:是指光纤中只能传导基模的最短波长。对于单模光纤,其截止波长必须短于传导光的波长。

  10.光纤的色散对光纤通信系统的性能会产生什么影响?

  答:光纤的色散将使光脉冲在光纤中传输过程中发生展宽。影响误码率的大小,和传输距离的长短,以及系统速率的大小。

  11.什么是背向散射法?

  答:背向散射法是一种沿光纤长度上测量衰减的方法。光纤中的光功率绝大部分为前向传播,但有很少部分朝发光器背向散射。在发光器处利用分光器观察背向散射的时间曲线,从一端不仅能测量接入的均匀光纤的长度和衰减,而且能测出局部的不规则性、断点及在接头和连接器引起的光功率损耗。

  ?

  OTDR正是利用背向散射来测光缆线路的损耗,长度等。

  ?

  光在光纤中传播时会发生瑞利散射(Rayleigh backscattering)以及菲涅尔反射(Fresnel reflection),OTDR就是利用了光这一特点,采集光脉冲的在通路中的背向散射及反射而制成的高科技、高精密的光电一体化仪表。

  12.光时域反射计(OTDR)的测试原理是什么?有何功能?

  答:OTDR基于光的背向散射与菲涅耳反射原理制作,利用光在光纤中传播时产生的后向散射光来获取衰减的信息,可用于测量光纤衰减、接头损耗、光纤故障点定位以及了解光纤沿长度的损耗分布情况等,是光缆施工、维护及监测中必不可少的工具。其主要指标参数包括:动态范围、灵敏度、分辨率、测量时间和盲区等。

  ?

  13.OTDR的盲区是指什么?对测试会有何影响?在实际测试中对盲区如何处理?

  答:通常将诸如活动连接器、机械接头等特征点产生反射引起的OTDR接收端饱和而带来的一系列“盲点”称为盲区。

  光纤中的盲区分为事件盲区和衰减盲区两种:由于介入活动连接器而引起反射峰,从反射峰的起始点到接收器饱和峰值之间的长度距离,被称为事件盲区;光纤中由于介入活动连接器引起反射峰,从反射峰的起始点到可识别其他事件点之间的距离,被称为衰减盲区。

  对于OTDR来说,盲区越小越好。盲区会随着脉冲展宽的宽度的增加而增大,增加脉冲宽度虽然增加了测量长度,但也增大了测量盲区,所以,在测试光纤时,对OTDR附件的光纤和相邻事件点的测量要使用窄脉冲,而对光纤远端进行测量时要使用宽脉冲。

  14.OTDR能否测量不同类型的光纤?

  答:如果使用单模OTDR模块对多模光纤进行测量,或使用一个多模OTDR模块对诸如芯径为62.5mm的单模光纤进行测量,光纤长度的测量结果不会受到影响,但诸如光纤损耗、光接头损耗、回波损耗的结果是不正确的。所以,在测量光纤时,一定要选择与被测光纤相匹配的OTDR进行测量,这样才能得到各项性能指标均正确的结果。

  15.常见光测试仪表中的“1310nm”或“1550nm”指的是什么?

  答:指的是光信号的波长。光纤通信使用的波长范围处于近红外区,波长在800nm~1700nm之间。常将其分为短波长波段和长波长波段,前者指850nm波长,后者指1310nm和1550nm。

  光纤通信工作波长在于近红外区,波段有:

  O波段:1260nm到1310nm

  E波段:1360nm到1460nm

  S波段:1460nm到1530nm

  C波段:1535nm到1565nm

  L波段:1565nm到1625nm

  U波段:1640nm到1675nm

  ?

  单模光纤通常工作在1310nm、1550nm和1625nm。

  16.在目前商用光纤中,什么波长的光具有最小色散?什么波长的光具有具有最小损耗?

  答:1310nm波长的光具有最小色散,1550nm波长的光具有最小损耗。

  17.根据光纤纤芯折射率的变化情况,光纤如何分类?

  答:可分为阶跃光纤和渐变光纤。阶跃光纤带宽较窄,适用于小容量短距离通信;渐变光纤带宽较宽,适用于中、大容量通信。

  18.根据光纤中传输光波模式的不同,光纤如何分类?

  ?

  ?

  答:可分为单模光纤和多模光纤。单模光纤芯径约在1~10μm之间,在给定的工作波长上,只传输单一基模,适于大容量长距离通信系统。多模光纤能传输多个模式的光波,芯径约在50~60μm之间,传输性能比单模光纤差。

  在传送复用保护的电流差动保护时,安装在变电站通信机房的光电转换装置与安装在主控室的保护装置之间多用多模光纤。

  19.阶跃折射率光纤的数值孔经(NA)有何意义?

  答:数值孔经(NA)表示光纤的收光能力, NA越大,光纤收集光线能力越强。

  20.什么是单模光纤的双折射?

  答:单模光纤中存在两个正交偏振模式,当光纤不完全园柱对称时,两个正交偏振模式并不是简并的,两个正交偏振的模折射率的差的绝对值即为双折射。

  21.最常见的光缆结构有几种?

  答:有层绞式和骨架式两种。

  22.光缆主要由什么组成?

  答:主要由:纤芯、光纤油膏、护套材料、PBT(聚对苯二甲酸丁二醇酯)等材料组成。

  23.光缆的铠装是指什么?

  答:是指在特殊用途的光缆中(如海底光缆等)所使用的保护元件(通常为钢丝或钢带)。铠装都附在光缆的内护套上。

  ?

  24.光缆护套用什么材料?

  答:光缆护套或护层通常由聚乙烯(PE)和聚氯乙烯(PVC)材料构成,其作用是保护缆芯不受外界影响。

  ?

  25.列举在电力系统中应用的特殊光缆。

  答:主要有三种特殊光缆:

  地线复合光缆(OPGW),光纤置于钢包铝绞结构的电力线内。OPGW光缆的应用,起到了地线和通信的双功能,有效地提高了电力杆塔的利用率。

  缠绕式光缆(GWWOP),在已有输电线路的地方,将这种光缆缠绕或悬挂在地线上。

  自承式光缆(ADSS),有很强的抗张能力,可直接挂在两座电力杆塔之间,其最大跨距可达1000m。

  26.OPGW光缆的应用结构有几种?

  答:主要有:1)塑管层绞+ 铝管的结构;2) 中心塑管+ 铝管的结构;3) 铝骨架结构;4) 螺旋铝管结构;5) 单层不锈钢管结构( 中心不锈钢管结构、不锈钢管层绞结构);6) 复合不锈钢管结构( 中心不锈钢管结构、不锈钢管层绞结构)。

  27.OPGW光缆缆芯外的绞线线材主要由什么组成?

  答:以AA线(铝合金线) 和AS线材(铝包钢线)组成。

  ?

  28.要选择OPGW光缆型号,应具备的技术条件有哪些?

  答: 1) OPGW光缆的标称抗拉强度(RTS) (kN);

  2) OPGW光缆的光纤芯数(SM); 3) 短路电流(kA); 4) 短路时间(s); 5) 温度范围(℃)。

  29.光缆的弯曲程度是如何限制的?

  答:光缆弯曲半径应不小于光缆外径的20倍,施工过程中(非静止状态)不小于光缆外径的30倍。

  30.在ADSS光缆工程中,需注意什么?

  答:有三个关键技术:光缆机械设计、悬挂点的确定和配套金具的选择与安装。

  31.光缆金具主要有哪些?

  答:光缆金具是指安装光缆使用的硬件,主要有:耐张线夹,悬垂线夹、防振器等。

  32.光纤连接器有两个最基本的性能参数,分别是什么?

  答:光纤连接器俗称活接头.对于单纤连接器光性能方面的要求,重点是在介入损耗和回波损耗这两个最基本的性能参数上。

  33.常用的光纤连接器有几类?

  答:按照不同的分类方法,光纤连接器可以分为不同的种类,按传输媒介的不同可分为单模光纤连接器和多模光纤连接器;按结构的不同可分为FC、SC、ST、D4、DIN、Biconic、MU、LC、MT等各种型式;按连接器的插针端面可分为FC、PC(UPC)和APC。常用的光纤连接器:FC/PC型光纤连接器、SC型光纤连接器,LC型光纤连接器。

  34.光纤熔接图示

  ?

  ?

  ?

  ?

  35.什么是光纤连接器的介入损耗(或称插入损耗)?

  答:是指因连接器的介入而引起传输线路有效功率减小的量值,对于用户来说,该值越小越好。ITU-T规定其值应不大于0.5dB。

  36.什么是光纤连接器的回波损耗(或称反射衰减、回损、回程损耗)?

  答:是衡量从连接器反射回来并沿输入通道返回的输入功率分量的一个量度,其典型值应不小于25dB。

  37.发光二极管和半导体激光器发出的光最突出的差别是什么?

  答:发光二极管产生的光是非相干光,频谱宽;激光器产生的光是相干光,频谱很窄。

  38.发光二极管(LED)和半导体激光器(LD)的工作特性最明显的不同是什么?

  答:LED没有阈值,LD则存在阈值,只有注入电流超过阈值后才会产生激光。

  39.单纵模半导体激光器常用的有哪两种?

  答:DFB激光器和DBR激光器,二者均为分布反馈激光器,其光反馈是由光腔内的分布反馈布拉格光栅提供的。

  40.光接收器件主要有哪两种?

  答:主要有光电二极管(PIN管)和雪崩光电二极管(APD)。

  41.光纤通信系统的噪声产生的因素有哪些?

  答:有由于消光比不合格产生的噪声,光强度随机变化的噪声,时间抖动引起的噪声,接收机的点噪声和热噪声,光纤的模式噪声,色散导致的脉冲展宽产生的噪声,LD的模分配噪声,LD的频率啁啾产生的噪声以及反射产生的噪声。

  42.目前用于传输网建设的光纤主要有哪些?其主要特点是什么?

  答:主要有三种,即G.652常规单模光纤、G.653色散位移单模光纤和G.655非零色散位移光纤。

  G.652单模光纤在C波段1530~1565nm和L波段1565~1625nm的色散较大,一般为17~22psnm?km,系统速率达到2.5Gbit/s以上时,需要进行色散补偿,在10Gbit/s时系统色散补偿成本较大,它是目前传输网中敷设最为普遍的一种光纤。

  G.653色散位移光纤在C波段和L波段的色散一般为-1~3.5psnm?km,在1550nm是零色散,系统速率可达到20Gbit/s和40Gbit/s,是单波长超长距离传输的最佳光纤。但是,由于其零色散的特性,在采用DWDM扩容时,会出现非线性效应,导致信号串扰,产生四波混频FWM,因此不适合采用DWDM。

  G.655非零色散位移光纤:G.655非零色散位移光纤在C波段的色散为1~6psnm?km,在L波段的色散一般为6~10psnm?km,色散较小,避开了零色散区,既抑制了四波混频FWM,可用于DWDM扩容,也可以开通高速系统。新型的G.655光纤可以使有效面积扩大到一般光纤的1.5~2倍,大有效面积可以降低功率密度,减少光纤的非线性效应。

  43.什么是光纤的非线性?

  答:是指当入纤光功率超过一定数值后,光纤的折射率将与光功率非线性相关,并产生拉曼散射和布里渊散射,使入射光的频率发生变化。

  44.光纤非线性对传输会产生什么影响?

  答:非线性效应会造成一些额外损耗和干扰,恶化系统的性能。WDM系统光功率较大并且沿光纤传输很长距离,因此产生非线性失真。非线性失真有受激散射和非线性折射两种。其中受激散射有拉曼散射和布里渊散射。以上两种散射使入射光能量降低,造成损耗。在入纤功率较小时可忽略。

  45.什么是PON(无源光网络)?

  答:PON是本地用户接入网中的光纤环路光网络,基于无源光器件,如耦合器、分光器。

  46.光纤连接器

  ?

  ?

  光纤适配器

  ?

  PC/UPC/APC光纤截面

  光纤接头的截面应该分为PC、UPC、APC。

  PC和UPC为光纤微球型端面是与陶瓷体的端面是平行的,工业标准的回波损耗分别为-35dB和-50dB。

  APC截面8度倾斜角,为了减少反射,工业标准的回波损耗为-60dB。

  ?

  47.光耦合器

  光纤耦合器(Coupler)又称分路器(Splitter),是将光信号从一条光纤中分至多条光纤中的元件。

  ?

  耦合器是双向无源器件,基本形式有树型、星型。

  48.什么是模场直径

  大部分光集中在纤芯,部分进入包层,这一更宽的分布称为模场直径。

  ?

  单模光纤中的基模场并没有完全集中在纤芯中,有一部分的能量存在于包层中。所以不能像多模光纤那样用纤芯直径表示横截面上的传光范围,只能用模场直径来表示。

  ?

  模场直径是衡量单模光纤横截面上基模场分布的一个物理量。模场直径用来表征在单模光纤的纤芯区域基模光的分布状态。基模在纤芯区域轴心线处光强最大,并随着偏离轴心线的距离增大而逐渐减弱。 一般将模场直径定义为光强降低到轴心线处最大光强的1/(e^2)的各点中两点最大距离。

  光纤即为光导纤维的简称。光纤通信是以光波作为信息载体,以光纤作为传 输媒介 的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光 源和光检测器。 光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应 用中,光纤常按用途进行 分类,可分为通信用光纤和传感用光纤。

  ?

  石英玻璃非常脆弱,因此覆有保护涂层。通常有三种典型的光纤涂敷层。

  一次涂敷光纤

  覆有直径为0.25毫米紫外线固化丙烯酸树脂涂敷层的光纤。其直径非常小,增加了光缆内可容纳光纤的密度,使用非常普遍。

  ?

  二次涂敷光纤

  亦称为紧包缓冲层光纤或半紧包缓冲层光纤。光纤表面覆有直径为0.9毫米的热塑性树脂。与0.25毫米的光纤相比,其具有更坚固,易操作的优点。广泛应用于局域网布线及光纤数量较少的光缆。

  ?

  带状光纤

  带状光纤提高了连接器组装的效率,有利于多芯融接,从而提高了作业效率。

  ?

  带状光纤由4根、8根或12根不同颜色的光纤组成,芯纤数最大可达1,000根。光纤表层覆有紫外线固化丙烯酸脂材料,使用标准光纤剥套钳便可轻松去除涂敷层,方便多芯融接或取出单个光纤。使用多芯融接机,带状光纤可一次性融接,在光纤数量多的光缆中能轻易识别出来。

  光纤种类

  以下是对最常用的通信光纤种类的描述。

  MMF(多模光纤)

  - OM1光纤或多模光纤(62.5/125)

  - OM2/OM3光纤(G.651光纤或多模光纤(50/125))

  SMF(单模光纤)

  - G.652(色散非位移单模光纤)

  - G.653(色散位移光纤)

  - G.654(截止波长位移光纤)

  - G.655(非零色散位移光纤)

  - G.656(低斜率非零色散位移光纤)

  - G.657(耐弯光纤)

  只要光预算允许,技术上来讲,任何合适的光纤都可应用于FTTx技术,但FTTx技术最常用的光纤为G.652和G.657。

  G.651(多模光纤)

  G.651主要应用于局域网,不适用于长距离传输,但在300至500米的范围内,G.651是成本较低的多模传输光纤。

  ?

  ITU-T G.651光纤即OM2/OM3光纤或多模光纤(50/125)。ITU-T推荐光纤中并没有OM1光纤或多模光(62.5/125)。

  多模光纤(50/125)纤芯的反射率从中心到包层逐渐改变,使得多路光传输可以在同一速度下进行。

  ?

  G.652光纤(色散非位移单模光纤)

  世界上最普遍的单模光纤。可以将波长在1,310nm左右的使信号变形的色散降至最低。您可将1550nm波长的工作窗口用于短距离传输或与色散补偿光纤或与模块共同使用。

  G.652A/B是基本的单模光纤,G.652C/D是低水峰单模光纤

  G.653(色散位移光纤)

  此光纤可将在1,550nm波长左右的色散降至最低,从而使光损失降至最低。

  G.654(截止波长位移光纤)

  G.654的正式名称为截止波长位移光纤,但普通称为低衰减光纤。低衰减的特性使得G.654光纤主要应用于海底或地面长距离传输,比如400千米无转发器的线路。

  G.655(非零色散位移光纤)

  G.653光纤在1,550nm波长时色散为零,而G.655光纤则具有集中的或正或负的色散,这样就减少了DWDM系统中与相邻波长相互干扰的非线性现象的不良影响。

  第一代非零色散位移光纤,如PureMetro?光纤具有每千米色散等于或低于5ps/nm的优点,从而使色散补偿更为简便。第二代非零色散位移光纤,如PureGuide? 色散达到每千米10ps/nm左右,使DWDM系统的容量提高了一倍。

  G.656光纤(低斜率非零色散位移光纤)

  非零色散位移光纤的一种,对于色散的速度有严格的要求,确保了DWDM系统中更大波长范围内的传输性能。

  G.657(耐弯光纤)

  ITU-T光纤系列中的最新成员。根据FTTx技术的需求及组装应用而生的新产品。

  G.657A光纤与G.652光纤兼容,G.657B光纤无需与传统单模光纤在连接上兼容。

  光纤接线技术的分类

  光纤接线技术可以分为融接、机械绞接及连接器接线。融接和机械绞接为永久性接线,连接器接线则可以反复拆装。光连接器接线主要用于在光服务的运用和维护中必须切换的接线点,其他场所主要使用永久性接线。

  光纤接线中出现损耗的原理

  光纤接线必须使光通过的纤芯部分对置,正确定位。

  光纤的接线损耗主要由下列原因引起。

  (1)轴偏移

  连接光纤之间的光轴偏移会引起接线损耗。在通用的单模光纤的情况下,接线损耗大约为轴偏移量的平方乘以0.2的值。(例如,在光源波长为1310nm的情况下,轴偏移量为1μm时,接线损耗约为0.2dB)

  ?

  (2)角度偏移

  连接光纤的光轴之间的角度偏移会引起接线损耗。例如,如果融接之前用光纤切割刀切断的断面角度变大,光纤会以倾斜状态接线,因此必须注意。

  ?

  (3)缝隙

  光纤端面之间的缝隙会引起接线损耗。例如,如果用机械绞接连接的光纤端面没有正确贴合,就会引起接线损耗。

  ?

  (4)反射

  光纤端面存在空隙时,由于光纤和空气的折射率不同,会因最大0.6dB程度的反射而引起接线损耗。并且,为了防止断光,在光连接器上清洁光纤端面很重要。但是在光纤端面以外的光连接器端面夹有垃圾也会出现损耗,因此,清洁所有的光连接器端面很重要。

  融接的种类和原理

  融接是利用电极棒之间放电产生的热能使光纤融化为一体的接线技术。融接方式分为以下两类。

  (1)光纤芯调芯方式

  这是在显微镜下观察光纤的芯线,通过图像处理进行定位,使芯线的中心轴一致,然后进行放电的融接方式。采用配置双向观察摄影机的融接机从两个方向进行定位。

  ?

  (2)固定V型槽调芯方式

  这是采用高精度V型槽排列光纤,利用融化光纤时的表面张力所产生的调芯效果进行外径调芯的融接方式。最近,由于制造技术的发展使光纤芯位置等的尺寸精度得到提高,因此,可以实现低损耗接线。本方式主要用于多芯一次性接线。

  ?

  融接作业的注意事项

  这是采用高精度V型槽排列光纤,利用融化光纤时的表面张力所产生的调芯效果进行外径调芯的融接方式。最近,由于制造技术的发展使光纤芯位置等的尺寸精度得到提高,因此,可以实现低损耗接线。本方式主要用于多芯一次性接线。

  ①插入光纤保护套管

  光纤保护套管用于保护在接线点露出的光纤。由于保护套管无法补插,因此请不要忘记插入。

  ②去除芯线涂敷层

  因为要使光纤的玻璃部分露出,所以采用剥套钳去除涂敷层。

  (注)由于去除涂敷层之后会在剥套钳上残留涂敷层废屑,因此,请去除涂敷层废屑并清洁刀刃。

  (注)去除带状芯线的涂敷层时,使用加热式剥套钳。为了稳妥地进行去除作业,请将涂敷层加热5秒左右,然后再去除涂敷层。

  ③清洁光纤

  去除涂敷后,用乙醇清洁玻璃部分。

  (注)如果残留涂敷层废屑,融接时可能会出现轴偏移,接线损耗会增大,因此请仔细清扫。

  (注)在多芯光纤的情况下,光纤前端之间会因酒精而粘在一起,有可能会在裁断光纤时引起裁断不良,因此,请用手指将光纤前端弹开。

  ④切断光纤

  按照裁断光纤的操作步骤进行裁断。

  (注)裁断将决定融接时的损耗特性。为了降低裁断不良,请注意清洁光纤切割刀的光纤拿持部和裁断刀刃。

  (注)请注意不要碰撞或触摸裁断后的光纤前端。否则会引起接线不良。

  (注)请注意不要让光纤废屑到处乱洒。

  ⑤融接

  按照融接机的操作步骤进行融接作业。

  (注)如果在融接机的V型槽和夹具上有垃圾,会因轴偏移而引起损耗异常,因此请充分清扫。

  (注)如果具备接线前双向观察检查功能,便可以在接线前探测裁断状态的异常。

  (注)光纤呈弯曲状态时,用手指轻轻捋直,使光纤朝下弯曲放置。

  ⑥融接部补强

  在光纤融接部套上光纤保护套管,在加热机上进行芯线补强。

  (注)移动芯线时,请注意避免使光纤弯曲或扭曲。否则会造成光缆破损断裂。

  (注)设置光纤保护套管时,请使光纤保护套管的中心与接线部的中心基本保持一致。

  (注)进行芯线补强时,请务必避免玻璃部分弯曲放置。

  光纤的有关规定

  ● 光纤芯直径

  适用于多模光纤的技术参数。表示最接近光纤芯范围的外围圆的直径。因为该值越小越能够实现宽带化,所以目前光纤芯直径一般为50μm。

  ?

  ● 模场直径 (MFD)

  适用于单模光纤的技术参数。表示传输模式的电场分布范围 (光通道) 的直径。光通常通过光纤芯范围,但是在单模光纤的情况下,光也会泄露到包层范围,因此,不按光纤芯直径而按MFD规定。为此,MFD比光纤芯直径要大一 些。该值越小对校准精度的要求越高。此外,连接的光纤之间的MFD的差越大接线损耗就越大。

  ● 包层直径

  最接近包层表面的圆的直径。连接的光纤之间的包层直径的差越大接线损耗就越大。

  ● 光缆截止波长

  适用于单模光纤的技术参数。如果以小于该值的波长使用,则不为单模。该值由折射率分布和光纤芯的尺寸等光纤的构造来决定。

  ● 屏蔽等级

  屏蔽是指为了去除玻璃的缺陷等、提高结构的可靠性而给予整个光纤一定的伸长率,预先使低强度部分断裂的方法。屏蔽等级表示该伸长率的值。该值越大光纤的可靠性就越高。

  ● 传输损耗

  表示光纤传输光时两点之间的光功率的减少值,以下面的算式表示。

  α=-(10/L) log (P2/P1)

  L:光缆长度

  P:入射光的功率

  P2:出射光的功率

  该值越大,光功率的减少就越大,因此,传输距离就越短。

  ● 传输频带

  适用于多模光纤的技术参数。表示基带传输函数的大小减少到某个规定值 (6dB) 的频率。也就是说,它是表示到哪个频率为止能够使信号在不失真的状态下传输的值。该值越大就越能够以高频率、大容量传输。

  ● 零色散波长

  适用于单模光纤的技术参数。表示波长色散为零的波长。如果以波长色散的绝对值较大的波长传输,色散会变大,光脉冲的失真也会变大。将零色散波长设计在1310nm附近的光纤为通用SM。设计在1550nm附近的光纤为色散位移光纤 (DSF)。

  ● 零色散斜率

  适用于单模光纤的技术参数。表示零色散波长的色散倾斜度。如果零色散斜率较大,一般情况下各种波长的色散绝对值也会变大。

  光缆部分的有关规定

  ● 最大允许张力

  铺设光缆时可以施加的最大张力。但是并不是铺设后也可以一直施加该张力,因此必须加以注意。

  ● 最小允许弯曲半径

  光缆能够弯曲的最小半径。在铺设中和铺设后,最小弯曲半径会不同。一般情况下的标准是:最小允许弯曲半径在铺设中为光纤半径的20倍,在铺设后为光纤半径的10倍。

  ● 适用温度范围

  可铺设光纤的温度环境。一般情况下的标准是:如果在室外使用,适用温度范围为-20~+60℃,如果在室内使用,适用温度范围为-10~+40℃。

  ● 防水特性率

  一般情况下,对在地下铺设的光缆要求其具备防水特性。试验方法有各种各样,本公司在常温下连续24小时进行以下试验时,一般以光缆内不会有3m程度以上程度的进水为标准,这个标准根据光缆的构造有所不同。

  ?

  光连接器的有关规定

  ?

  ● 接线损耗

  是连接光纤与光纤时,光从一方的光纤进入另一方的光纤时出现的损耗,用以下算式表示。

  α=-10log (P2/P1) [dB]

  P1:紧挨着接线部位前部的光功率

  P2:在接线部位反射的光功率

  该值越大,反射的光功率就越小,因此,噪声就越小。

  ● 反射损耗

  是以数字表示的到光连接器的入射光功率与在接线面反射的光功率的比值,用以下算式表示。

  α=-10log (P3/P1) [dB〕

  P1:紧挨着接线部位前部的光功率

  P3:在接线部位反射的光功率

  该值越大,反射的光功率就越小,因此,噪声就越小。

  ● 插芯的研磨方法

  插芯的研磨方法,连接器的接线特性有所不同。

  光终接/接线箱、接头盒的有关规定

  ● 防尘防水特性

  光终接/接线箱、接头盒都要求针对一般外界固体加以保护,并针对浸水加以保护 (主要是室外)。保护的分类以 [JIS C 0920] 中规定的IP代码表示。

  ● 表示方法

  IP54:防尘形并且针对水的飞沫加以保护。

  IP3X:针对直径为2.5mm以上的外界固体加以保护。省 略针对水的保护。

  IPX7:省略针对外界固体的保护,保护工作做到即使浸水也没有影响。

  ?

  ● 表示方法

  ?

  按光在光纤中的传输模式可将光纤分为单模光纤和多模光纤两种。

  单模光纤(Single-mode Fiber):一般光纤跳线用黄色表示,接头和保护套为蓝色;传输距离较长。

  多模光纤(Multi-mode Fiber):一般光纤跳线用橙色表示,也有的用灰色表示,接头和保护套用米色或者黑色;传输距离较短。

  多模光纤(MMF,Multi Mode Fiber),纤芯较粗,可传多种模式的光。但其模间色散较大,且随传输距离的增加模间色散情况会逐渐加重。多模光纤的传输距离还与其传输速率、芯径、模式带宽有关。

  单模光纤(SMF,Single Mode Fiber),纤芯较细,只能传一种模式的光。因此,其模间色散很小,适用于远程通讯。

  光纤直径

  光纤直径一般采用纤芯直径/包层直径的表示方法,单位μm。例如:9/125μm表示光纤中心纤芯直径为9μm,光纤包层直径为125μm。

  光纤使用注意:

  光纤跳线两端的光模块的收发波长必须一致,也就是说光纤的两端必须是相同波长的光模块,简单的区分方法是光模块的颜色要一致。R>一般的情况下,短波光模块使用多模光纤(橙色 的光纤),长波光模块使用单模光纤(黄色光纤),以保证数据传输的准确性。

  光纤在使用中不要过度弯曲和绕环,这样会增加光在传输过程的衰减。

  光纤跳线使用后一定要用保护套将光纤接头保护起来,灰尘和油污会损害光纤的耦合。

  光纤连接器按传输媒介的不同可分为常见的硅基光纤的单模、多模连接器,还有其它如以塑胶等为传输媒介的光纤连接器;按连接头结构形式可分为:FC、SC、 ST、LC、D4、DIN、MU、MT等等各种形式。其中,ST连接器通常用于布线设备端,如光纤配线架、光纤模块等;而SC和MT连接器通常用于网络设备端。按光纤端面形状分有FC、PC(包括SPC或UPC)和APC;按光纤芯数划分还有单芯和多芯(如MT-RJ)之分。

  FC 圆型带螺纹(配线架上用的最多)

  ST 卡接式圆型

  SC 卡接式方型(路由器交换机上用的最多)

  MT-RJ 方型,一头双纤收发一体

  PC 微球面研磨抛光

  APC 呈8度角并做微球面研磨抛光

  ( PC, APC为对接端面的类型)

  光纤通信技术的优缺点与应用领域

  用玻璃纤维中的光传送信息

  作为一种有线网络,光纤通信无法满足移动的需求。日常生活中,我们的手机通信用的是无线网络,光纤通信的存在感似乎并不强。

  “但实际上,90%以上的信息传输是借助光纤完成的。手机通过无线网络与基站连接,而基站间信号的传递大部分依赖光纤。”光纤通信网络技术国家重点实验室光系统研究室副主任贺志学在接受科技日报记者采访时说。

  光纤就是光导纤维,它细如发丝,可被直埋、架空,亦可被置于海底。因其轻盈、便捷、制作原材料成本低,最终替代了笨重的电缆成为主流的信号传输介质。

  简单来说,光纤通信就是光通信。常见的光通信应用有望远镜、红绿灯等,它们利用大气传播可见光,属于视觉传输。光纤通信则是利用玻璃纤维中的光传送信息。

  光纤通信的优点,通信容量大,中继距离长,不l受电磁干扰,资源丰富,光纤重量轻,体积小,,光通信发展简史,二千多年前,烽火台一灯光一旗语,一八八零年光电话一无线光通信,光纤通信,一九六六年光纤之父高锟博士首次提出光纤通信的想法。一九七零年康宁公司作出了损耗为20dB每千米的光纤。

  

光纤通信基础知识讲解?光纤通信简明教程答案

  

光纤通信基础知识讲解?光纤通信简明教程答案

  

光纤通信基础知识讲解?光纤通信简明教程答案

来源:文章来源于网络,如有侵权请联系我们及时删除。本文由机械网转载编辑,欢迎分享本文!