欢迎您光临机械网,如有问题请及时联系我们。

高频振荡器原理?高频振荡器原理视频讲解

作者:机械网
文章来源:本站

  T1的初级线圈L1和电容器C1组成LC并联振荡回路,其振荡频率约200kHz,由L1的电感量和C1的电容量决定。T1的次级线圈L2作为振荡器的反馈线圈,其“C”端接振荡管VT1的基极,“D”端接VD2。由于VD2处于正向导通状态,对高频信号来说,“D”端可视为接地。在高频变压器T1中,如果“A”和“D”端分别为初、次级线圈绕线方向的首端,则从“C”端输入到振荡管VT1基极的反馈信号,能够使电路形成正反馈而产生自激高频振荡。

  高频振荡器通过稳压电路供电,其电路由稳压二极管VD1、限流电阻器R6和去耦电容器C5组成。 振荡管VT1发射极与地之间接有两个串联的电位器,具有发射极电流负反馈作用,其电阻值越大,负反馈作用越强,VT1的放大能力也就越低,甚至于使电路停振。RP1为振荡器增益的粗调电位器,RP2为细调电位器。高频振荡器探测金属的原理:调节高频振荡器的增益电位器,恰好使振荡器处于临界振荡状态,也就是说刚好使振荡器起振。当探测线圈L1靠近金属物体时,由于电磁感应现像,会在金属导体中产生涡电流,使振荡回路中的能量损耗增大,正反馈减弱,处于临界态的振荡器振荡减弱,甚至无法维持振荡所需的最低能量而停振。如果能检测出这种变化,并转换成声音信号,根据声音有无,就可以判定探测线圈下面是否有金属物体了。

  在电子电路中,充分利用晶体管的开关作用,利用电感的储能与电容器的充放电的原理,把储存的电能变成电感的磁能,而后又把磁能变成电能。

  晶体管在电路中,代替开关以补充能量,而补充能量的时刻就由LC振荡本身的反馈部分来决定,这样就可以有节奏的补充,从而得到谐振。

  LC振荡的产生归根结底必须具备以下三个条件;

  

高频振荡器原理?高频振荡器原理视频讲解

  (1)有一个LC振荡回路,它是振荡的主要内因,并且决定了谐振的频率。

  

高频振荡器原理?高频振荡器原理视频讲解

  (2)有正反馈控制的能量补充,并且正反馈要足够大,以保证补充的能量不小于第一次振荡中消耗的能量。

  (3)使用非线性元器件晶体管作为开关,当振荡强一点时反馈弱一些,自动调节振幅小一些。相反,当振荡弱一点时,晶体管产生的正反馈就强一些,自动调节振幅大一些,这样就能够保持等幅振荡。

  常用的LC振荡器的基本电路有,变压器耦合LC振荡器、电感三点式LC振荡器、电容三点式LC振荡器。

  如果需要的不是高频振荡,而是低频振荡,甚至超低频振荡,这时候LC振荡器就不适用了。这是因为,当频率很低时就必须要LC的电感量和电容器的容量很大,例如要产生16Hz的低频,根据f=1/2π√LC的计算公式,这时候电感就要1H,电容就要100uf。如果振荡的周期大于一秒,电感电容的体积就相当可观了。因此,在低频时就要采用RC振荡器。

来源:文章来源于网络,如有侵权请联系我们及时删除。本文由机械网转载编辑,欢迎分享本文!